New insights into magma storage under the Katmai volcanic cluster

Outline

- Outstanding features of Katmai National Park
- Volcano monitoring and hazards
- Remaining questions about 1912 eruption
- Recent geology and geophysical results

Outstanding features of 1912 eruption

- Erupted 13 km³
 of magma as
 ~30 km³ of
 pumice and
 ash
- Caldera
 collapse
 occurred 10
 km from the
 vent
- Only historical ash-flow tuff, or ignimbrite (VTTS)

Outstanding features of 1912 eruption

- Erupted more ash than all other historical Alaskan eruptions combined
- Lowered
 Northern
 Hemisphere
 temperatures
 by 2° F for 1 yr
- Erupted nearly crystal-free high-silica rhyolite

The 1912 eruption sequence

CHRONOLOGY OF THE 1912 ERUPTION

- Episode 1 began with eruption of rhyolite-only ash fall and minor ash flow, then switched to predominantly ash flow when dacite and andesite magma were introduced.
- Episodes 2 and 3 were dominated by dacite ash fall and subordinate ash flow deposits.
- 400-m-wide rhyolite dome
 (Novarupta) probably formed
 weeks to months later

Katmai volcanic cluster

Southwest Trident eruption, 1953

- ~6 closely spaced stratocones
- 1953-1974
 eruption of
 Southwest Trident
 produced 0.5 km³
 of andesite
- Very seismically and fumarolically active today

100 years later - Significance to volcanology

 Ash-flow emplacement Proximal studies of Plinian (highly explosive) deposits Magmatic evolution (mixing versus) fractionation) Unusual magma "plumbing" system

Monitoring and hazards

Monitoring requires understanding of what volcanoes are capable of and how they work, and interpretation of geophysical signals

John Paskievitch (USGS AVO) servicing a webcam mounted on solar panels at seismometer site KABU in Katmai National Park and Preserve

Primary hazards are airborne ash and ash fall

Outstanding magmatic questions

- How was large body of rhyolite magma generated? Will it happen again?
 - Single zoned body (fractional crystallization)
 - Remelting of old rocks
- Where were 1912 magmas stored prior to eruption?
- Is there a connection to 1953-1974 eruption of Trident?

Compositional affinities of erupted magmas (Hildreth and Fierstein, 2012)

Results from experimental petrology

Blue field shows where the minerals present in the 1912 rhyolite are stable

- Rhyolite stored at 40-100 MPa, or ~2-4 km depth (Coombs and Gardner, 2001)
- Andesite and dacite stored at 25-100 MPa, or 1-4 km depth (Hammer et al., 2002)
- Both quite shallow (crust is 25+ km thick here)

Results from radiogenic isotopes (Turner et al., 2010)

- Andesite <1000 yrs old (²²⁶Ra/²³⁰Th)
- Dacites up to 8,000 yrs old (²³⁰Th/²³²Th)
- Rhyolite 50-100,000
 yrs old (²³⁰Th/²³²Th)
 - Solidified, then thawed by hotter magmas

Ages not consistent with closed-system evolution of all 3 magmas

USGS-University of Wisconsin seismic imaging experiment (2008-2010)

Green squares - AVO permanent stations; green circles - AVO/UW temporary stations.

P-wave tomographic slices

Earthquake relocations using double-difference technique

Earthquakes and estimated magma withdrawal volumes

Conclusions

- 1912 magmas likely not the products of closed-system evolution in a single magma chamber (instead thawing of previously solid igneous rock?)
- Little/no residual magma currently in the shallow crust beneath Katmai
- Introduction of new magma will likely be heralded by increase in seismicity, gas output, etc.

S-wave tomographic slices

Hazards

- Airborne ash and ash fall are the two primary hazards
- Locally, pyroclastic and debris flows can be devastating